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SE-Calib: Semantic Edge-Based LiDAR–Camera
Boresight Online Calibration in Urban Scenes
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Zhen Dong , Member, IEEE, and Bisheng Yang

Abstract— Rigorous boresight calibration between light detec-
tion and ranging (LiDAR) and the camera is crucial for
geometry and optical information fusion in Earth observa-
tion and robotic applications. Although boresight parameters
can be obtained through precalibration with artificial targets,
unforeseen movement of sensors during data collection can lead
to significant errors in the boresight parameters. To address
this issue, we propose SE-Calib, an automatic and target-free
online boresight calibration method for LiDAR–camera systems.
SE-Calib first extracts the semantic edge features from both point
clouds and images simultaneously using the 3-D semantic seg-
mentation (3-D-SS) and 2-D semantic edge detection (2-D-SED)
methods. The boresight parameters are then optimized with
an adaptive solver and maximizing the soft semantic response
consistency metric (SSRCM) scores iteratively. The SSRCM is
designed to evaluate the coherence of cross-modular semantic
edge features, and a confidence function is proposed to filter
out unreliable optimization results. Experiments conducted on
challenging urban datasets show an average boresight error
of 0.206◦ (2.47 pixels in reprojection error), demonstrating the
effectiveness and robustness of the proposed method.

Index Terms— Boresight parameters, mobile mapping system
(MMS), semantic edge features, sensors calibration.

I. INTRODUCTION

THE fusion of point clouds and images is crucial for
various applications in Earth observation and robotics,
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such as the mobile mapping system (MMS) [1], [2], simul-
taneous localization and mapping (SLAM) [3], [4], [5], 3-D
semantic segmentation (3-D-SS) [6], [7], [8], and 3-D object
detection (3-D-OD) [9], [10]. While the camera provides dense
color information and texture, images are ambiguous in depth
sensing and unreliable under harsh illumination conditions.
On the other hand, light detection and ranging (LiDAR) offers
accurate and light-invariant depth information but lacks density
and texture [6]. Combining sensors of multiple modalities pro-
vides complementary environmental information and reduces
data uncertainty.

Determining the extrinsic transform relationship (boresight
and translation parameters) between LiDAR and the camera
is an essential step in integrating the 2-D and 3-D infor-
mation [11]. While precalibration with artificial targets is
commonly performed in a calibration field [12], [13], the
accuracy of these precalibrated parameters decreases over
time due to sensor movement during data collection [14].
In particular, large errors in rotation parameters are more
common on vehicles than errors in translation parameters [15].
Therefore, an accurate and reliable target-free online boresight
calibration method is an urgent requirement for effectively
fusing geometry and optical information. In recent years,
various target-free methods have been developed for aligning
specific features extracted from point clouds and images,
e.g., line features [16], [17], edge features [18], [19], and
semantic features [14], [20], [21]. However, matching of
stable correspondences between noisy line features or edge
features can be challenging in real-world scenes, leading to
solvers easily getting stuck in locally optimal values [11], [22].
Most existing semantic feature-based methods rely on specific
semantic classes and are limited to specific scenes, such as
parking vehicles [21], poles [14], and stop signs [23], which
may not be available in many frames. Moreover, a crucial
issue, the reliability of the boresight parameter estimation,
is often ignored in these methods. Ultimately, the accuracy,
robustness, and generalization of existing methods are still
limited. Thus, our motivation is to find one kind of primitive
that is accurate, robust, and generative enough for the online
boresight calibration task in the urban scene.

Due to the wide distribution of semantic objects and the
distinction of edge features, semantic edge inherits the above
excellent characteristics and suppresses the matching outliers.
Therefore, we propose the SE-Calib to automatically estimate
the boresight (extrinsic rotation) parameters between a laser
scanner and a monocular camera by aligning the 2-D–3-D
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semantic edge primitives. The proposed method contains two
main steps: semantic edge features extraction and adaptive
boresight optimization. Specifically, the 2-D semantic edge
features extracted from images are achieved by an end-to-end
deep-learning-based 2-D semantic edge detection (2-D-SED)
method [24]. With respect to the point clouds, the 3-D seman-
tic edge features are extracted with the 3-D-SS method [8] and
a lightweight semantic edge detection algorithm. Then, using
the soft semantic response consistency metric (SSRCM), adap-
tive boresight optimization evaluates the responsive degrees
and aligns extracted semantic edge features iteratively. Then,
the confidence function is utilized as a plug-and-play module
to remove unreliable calibration results. The main contribu-
tions are given as follows.

1) The consistency between 2-D and 3-D semantic edge
features from different modalities is leveraged for
LiDAR–camera boresight calibration. The SE-Calib ben-
efits from the robustness and widespread availability of
semantic edge features, resulting in both accurate and
robust calibration results in various urban environments.

2) The SSRCM is proposed to weight semantic edge cor-
respondence pairs based on their response level and to
filter out unreliable boresight estimation results. It fully
leverages semantic edge features in the optimization
process to achieve the global optimal solution.

The rest of this article is organized as follows. Section II
provides a review of the related works. Section III details
the proposed method. Comprehensive experiments to evaluate
the SE-Calib are conducted in Section IV, followed by a
discussion of key components, analysis of features extraction
noise, hyperparameters settings, and false cases in Section V.
Finally, conclusions are drawn in Section VI.

II. RELATED WORK

In recent decades, there have been numerous reports of
LiDAR–camera calibration works in the photogrammetry and
robotics fields. In this section, we broadly divide existing
investigations into two categories: target-based methods and
target-free methods. In light of the recent expansion of deep-
learning-based research in multimodal registration and local-
ization, relevant studies are also covered.

A. Target-Based Methods

Early research in the area mainly utilized artificial targets
as calibration constraints. Zhang and Pless [25] introduced
an algorithm for calibrating a camera and 2-D laser range
finder using a planar checkerboard. They extracted checkpoints
from laser readings and detected the corresponding check-
board grids on the image. Then, the rotation and translation
parameters are calculated using a linear solution. Unnikrishnan
and Hebert [26] expanded Zhang’s method [25] by manu-
ally selecting keypoints from both images and point clouds
and made their MATLAB toolbox publicly available. Later,
Scaramuzza et al. [27] proposed to register the LiDAR and
camera based on the perspective-n-points (PnP) algorithm
with manually selected feature points and pixels. The above

methods belong to point-to-plane methods. However, the draw-
backs of manually selecting point-pixel pairs, such as artificial
error and time-consuming, have led to the development of
various object-based methods, including sphere [13], [28],
circular [29], trihedron [30], and triangular checkerboard [31].
Despite these advancements, all target-based methods still rely
on specific artificial targets and are unsuitable for challenging
urban scenes.

B. Target-Free Methods
In the last decade, there has been a surge in the development

of target-free methods for LiDAR and camera calibration.
We divide them into five streams: traditional feature-based
methods, mutual information (MI)-based methods, semantic
feature-based methods, motion-based methods, and end-to-end
learning-based methods.

1) Traditional Feature-Based Methods: In our knowledge,
Levinson and Thrun [15] proposed the first target-less cal-
ibration research based on edge features alignment. They
extracted geometric edges from point clouds and spectrum
edges [32] from images as candidate features for registra-
tion and maximized the global response value to refine the
extrinsic transform parameters. Taylor et al. [33] improved the
method in [15] by considering the edge orientation and using
the gradient orientation measure (GOM) [34] for LiDAR
and camera registration. Castorena et al. [18] performed data
fusion first and then used the alignment of depth and intensity
edges to correct the transform parameters. Zhang et al. [22]
proposed a line-based method that registered the line features
extracted from images and point clouds. Wang et al. [17]
further improved the line-based method in [22] by consid-
ering temporal synchronization. However, these traditional
target-free methods have some limitations. The geometric
edge/line features and spectrum edge/line features extracted
from point clouds and images are based on different rules and
not strongly correlated, which is exacerbated under changing
illumination.

2) MI-Based Method: MI has also been used as a spe-
cific feature for LiDAR–camera calibration by exploiting the
interior relevance between the intensity of point clouds and
grayscale of images [35], [36], [37]. However, the correlation
between LiDAR and image may not be stable due to variability
of devices and scanning modes [22].

3) Semantic Feature-Based Methods: With the recent devel-
opment of deep learning, several studies [11], [14], [17],
[20], [21], [23], [38] have focused on semantic features for
calibration. Li et al. [21] detected parking vehicles first and
registered point clouds and images with extracted vehicles
afterward. Zhu et al. [11] maximized the overlapping area
of vehicles from point clouds and images. Ma et al. [20]
registered the LiDAR and camera by aligning road lanes and
poles. Han et al. [23] extracted stop signs as primitives for
calibration and temporally updated results with a Kalman filter.
Jiang et al. [38] explored the consistency of semantic labels
between point clouds and images. Wang et al. [14] presented
an automatic registration method based on pole matching.
Despite their impressive results, the generalization of these
semantic-based methods is still restricted by three factors:
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first, the reliance on specific semantic objects circumscribes
the availability of challenging scenes; second, the blurry
boundaries of semantic segmentation results can affect the
accuracy of calibration; and third, the reliability of calibrated
parameters is overlooked.

4) Motion-Based Methods: [39], [40], [41], and [42]
estimated the extrinsic parameters of LiDAR and camera by
utilizing the motion of sensors as auxiliary cues. Structure-
from-motion (SfM) algorithms are used to solve visual odome-
try (VO), and the iterative closest point (ICP) algorithm is used
to solve LiDAR odometry. Taylor and Nieto [39] proposed a
motion-based approach to automatically calibrate any num-
ber of cameras, 3-D LiDARs, and inertial measurement unit
(IMU); then, Taylor and Nieto [40] further incorporated exist-
ing motion-based pipelines into a novel probabilistic model to
calibrate mobile system’s sensors. Corte et al. [41] proposed
a unified framework to optimize the intrinsics, extrinsics, and
time delay of several sensors. Sen et al. [42] proposed the
SceneCalib that used all sensor measurements simultaneously
to constrain all the parameters in a multicamera/single-LiDAR
system, while the accuracies of these methods are highly
dependent on the motion estimation.

5) End-to-End Learning-Based Methods: [43], [44], [45],
and [46] utilized the neural networks to regress the miscalibra-
tion error of given extrinsic parameters directly. RegNet [43]
first presented a convolutional neural network (CNN) to esti-
mate the six-degree-of-freedom extrinsic parameters, while
iterative estimation and temporal filtering were proposed to
refine calibration results. As the loss function minimizes the
distance between predicted extrinsic parameters and ground-
truth ones, RegNet needs to be retrained when sensor intrinsic
parameters change. CalibNet [44] improved the RegNet by
maximizing the geometric and photometric consistency of the
point clouds and images to regress the extrinsic parameters
implicitly. LCCNet [45] proposed an online self-calibration
method by introducing the cross-attention module to measure
the similarity between point clouds and images. SST-Calib
[46] explored the semantic consistency and VO information
to regress extrinsic parameters. However, the dependence
on specific sensor configurations (both LiDAR and camera)
makes them hard to implement.

C. Relevant Deep-Learning Studies
Recently, there has been a growing interest in learning-based

description and detection of local features [47] for image-to-
image and image-to-point cloud registration. This approach
tries to overcome the limitations of traditional meth-
ods by learning cross-domain representation simultaneously.
For example, LCD [48] proposed a dual autoencoder
network learning descriptors for cross-modality matching.
2D3D-MatchNet [49] extracted keypoints from image and
point clouds using scale invariant feature fransform (SIFT)
and intrinsic shape signatures (ISS) detectors, respectively;
then, a triplet-like CNN is used to learn the descriptors for
keypoints. However, the poor top-1 feature matching success
rate, about 20%, indicates that the response degree of SIFT
and ISS detectors is low. The large deviation of registration

results (about 7◦ of average rotation error and 1.5 m of average
translation error) indicates that artificial detectors for multiple
modalities registration are still at an early stage. P2-Net [50]
addressed this issue by jointly learning the detectors and
descriptors of images and point clouds and then mapping 2-D
and 3-D local features to a high-dimensional space for latent
response extraction. However, due to the significant difference
in modalities and sparsity of outdoor laser point clouds, P2-Net
is only suitable for indoor registration tasks. In the area of
camera relocation, DeepI2P [51] and CorrI2P [52] predicted
the overlapping region between the frustum of the camera
and LiDAR and then used an optimizer to find the solution.
However, the newest and most accurate method, CorrI2P, only
achieved the relative rotation error (RRE) 2.07◦

± 1.64◦ and
2.65◦

± 1.93◦ on KITTI [53] and Nuscenes [54] datasets,
respectively, indicating the need for further improvement in
accuracy.

Generally speaking, existing target-free calibration meth-
ods for LiDAR–camera are limited in terms of robustness,
generalization, and reliability. Most early studies lack robust-
ness because of concentrating on low-level artificial features.
Recent studies that exploit semantic features are constrained
to specific environments. Motion-based methods need to
recover the trajectory of cameras and LiDARs. End-to-end
learning-based methods are constrained by specific sensors
configuration. In this article, we propose SE-Calib, an online
calibration approach for the LiDAR and camera. With distinct
and ubiquitous semantic edge features and tailored response
assessment rules SSRCM, our method delivers accurate and
robust boresight estimation in various urban environments.

III. METHODOLOGY

For a convenient description, point clouds and image cap-
tured by the laser scanner and camera are written as P and
I , respectively. For each laser point Pk and corresponding
projection pixel I i j , the transformed relationship between the
LiDAR and camera could be denoted as follows:[

I i j

1

]
= K

[
R t
0 1

][
Pk

1

]
(1)

where R and t are the boresight rotation matrix and translation
vector from the laser scanner coordinates system to the camera
coordinates system, respectively, and K is the precalibrated
intrinsic matrix of the camera. Our work aims to estimate
the boresight rotation matrix or rotation Euler angle vector
r equally [as the 3-D rotation matrix lies in the Lie group
SO(3), R = exp(r)].

SE-Calib fully utilizes semantic edge features from point
clouds and images and further leverages the correlation
between cross-modality data to accurately estimate the bore-
sight (extrinsic rotation) parameters between the camera and
the laser scanner. The workflow of the proposed method is
shown in Fig. 1. First, semantic edge features are extracted
from images and point clouds. Then, an adaptive optimiza-
tion process is performed based on the consistency between
cross-modal semantic edge features. Moreover, a lightweight
confidence check-up process (CCuP) is proposed to filter out
unreliable frames. The key steps are detailed as follows.
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Fig. 1. Workflow of SE-Calib.

A. Semantic Edge Feature Extraction

1) 2-D Semantic Edge Extraction: Several CNN-based
2-D-SED methods [24], [55], [56] have been proposed to
detect semantic edge features on images. In this work, we uti-
lize the dynamic feature fusion (DFF) [24] network as our
2-D-SED backbone. The RGB image I is fed into the DFF
network and a probability map set P = {P1, P2, . . . , Pm}

obtained, where m indicates the number of categories, and
each map has the same size as I . After prediction, each pixel
is labeled with a float vector (also referred to as soft target)
indicating the probabilities of multiple semantic edge classes.
Hinton et al. [57] elaborated that the soft target with higher
entropy and lower variance compared to class labels (also
referred to hard target) benefits the posterior aligning process
implicitly. Furthermore, the hard target struggles to handle
ambiguities caused by occlusion, where the contours of several
foreground objects and background objects intersect at a single
pixel (as shown in Fig. 2). Therefore, we utilize the soft target
as calibration primitives to fully explore the uncertainty of the
prediction. The advantages of the soft target will be discussed
in Section V-B.

2) 3-D Semantic Edge Extraction: Despite being a growing
field, there are a few approaches in 3-D semantic edge detec-
tion (3-D-SED), with previous studies primarily focusing on
a single object or the indoor environment [58]. The 3-D-SED
task requires both sophisticated local features and hierarchical
high-level descriptors, which makes it difficult to transfer
existing methods to outdoor sparse point clouds. Given the
difficulties, we propose an alternative 3-D-SED method based
on the mature 3-D-SS method. First, we feed point clouds into
the 3-D-SS network [8], afterward extracting the probability

Fig. 2. Illustration of semantic edge ambiguities due to occlusion.
(a) Monocular image and (b) semantic edge mask. Contours of background
cars and foreground traffic sign intersect in the red block.

map set (soft targets) and label map set (hard targets). Then,
split point clouds into scans and detect label slips in two
nearest neighbor points of each scan. If the current point
has a different label from the prior or posterior one, it will
be classified as an edge point. Finally, affix soft targets to
detected edge points as semantic edge features. For details,
the pseudocode of the proposed 3-D-SED method is shown in
Algorithm 1. It should be retained that we are inspired by the
similar geometric discontinuity strategy for edge detection in
pioneering work [15].

Compared with the widely investigated edge detection
method based on distance discontinuities [5], [15] or local
gradient [59], the proposed method is lightweight and aware
of semantic boundaries without obvious distance change in
scanning direction, e.g., boundaries of sidewalk and road.
Fig. 3 visualizes the fully alternative 3-D-SED process.
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Algorithm 1 Semantic Edge Detection on Point Cloud
1: Input: point clouds P , semantic categories m, scans set

S = {S1, S2, . . . , Sn};
2: Initialize: semantic edge points set P se=∅;
3: 3D-SS: P C N N

−−−→ soft targets (semantic probabilities map)
F

solid f y
−−−−→ hard targets (label map) L;

4: Semantic discontinuities search: split raw point clouds
and hard targets into each scan: P = {P1, P2, . . . , Pn},
L = {L1, L2, . . . , Ln};

5: for i=1 to n: do
6: for j = 1 to |L i | − 1: do
7: if L j

Si
̸= L j−1

Si
or L j

Si
̸= L j+1

Si
then

8: pull P j
Si

into P se;
9: end if;

10: end for;
11: end for;
12: pick-up corresponding soft targets subset Fse from F with

P se;
13: return Fse, P se;

Fig. 3. Semantic edge detection process in point clouds. (a) Original point
clouds. (b) 3-D-SS results. (c) Detected semantic edge points with the
alternative 3-D-SED process. Rendering of (a) is according to the height value,
while (b) and (c) are with the SemanticKITTI [60] colorization rules.

B. Adaptive Boresight Optimization
The extracted semantic edge features are used to estimate

boresight parameters in our approach. Unlike prior works [61],
[62], our method takes both accuracy and reliability into
account, which is crucial for integrating the proposed method
into existing perception systems.

The boresight optimization is based on the assumption that
the semantic edge features from point clouds and images
should be well-aligned if the parameters are unbiased. Based
on the assumption, we project the semantic edge feature fk

from point clouds onto the image plane, find the correspond-
ing semantic edge feature fi j , and then assess the global
semantic consistency with the SSRCM metric in the following

Fig. 4. Unreliable frames for calibration. The first column shows the origin
RGB images and the second column shows the corresponding 2-D-SED
prediction results. Red boxes in (a) and (b) false detection area, and (c) and
(d) frames lack of meaningful features.

equation:

s(R) =

fk∑
fk∈Fse

fi j ◦ K (R fk + t). (2)

The SSRCM scores point-pixel corresponding pairs adap-
tively and accumulate the scores among semantic edge features
set to evaluate holistic response degree. In the adaptive opti-
mization process, we solve the boresight parameters by max-
imizing the SSRCM function with a grid search method [15],
[17], [22]. Specifically, centering around given initial boresight
parameters with search step ssp, we perform the grid search
across three dimensions of boresight parameters and compute
33

= 27 different values of SSRCM scores. Then, we update
the initial boresight parameters to the location with the high-
est score. A coarse-to-fine searching strategy is adopted for
effectiveness and accuracy while avoiding local minimal:

1) beginning with a relatively large search step ssp to
approach the vicinity of global optimum quickly;

2) halving the search step ssp if no higher score in neighbor
grids.

Steps 1) and 2) are performed iteratively to approach the global
optimum until the step size is smaller than the threshold.

Furthermore, we investigated the factors that compromise
the calibration results mostly with our empirical experience
and two issues were found:

1) false feature extraction results, as shown in
Fig. 4(a) and (b);

2) lack of significant semantic edge features, as shown in
Fig. 4(c) and (d).

To evaluate the reliability of optimized results, a confidence
function is proposed as (3) (for intuitive description, we reim-
plement t denoting time stamp and t denoting translation
vector without ambiguity there)

ct (R) =
1
N

fk∑
fk∈Fse

f t
i j ◦ K (R f t

k + t) =
1
N

s(R)t . (3)

A hard threshold to classify reliable and unreliable frames is
stiff and unsuitable for various scenarios. Inspired by [7] and
[63], spatial and temporal smoothness are utilized for reliable
frames selection instead.

1) Spatial Smoothness: With correct boresight parameters,
a large partition of pixel-point semantic edge features
pairs should be highly responsive and the confidence
value should keep at a high level.

2) Temporal Smoothness: With correct boresight parame-
ters, the confidence value among the temporally nearest
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Algorithm 2 CCuP
1: Input: optimized boresight parameters r̂ , timestamp t ,

spatial smoothness threshold ϵs , temporal smoothness
threshold ϵt ;

2: calculate confidence score ct (r) by Eq. (4);
3: check optimization reliability:
4: if ct (r) > ϵs and min( ct (r)

c(t−1)(r) ,
ct (r)

c(t+1)(r) ,
c(t+1)(r)

ct (r) , c(t−1)(r)
ct (r) ) >

ϵt then
5: r̂ t

reliable = T rue;
6: else
7: r̂ t

reliable = False;
8: end if;
9: return confidence label r̂ t

reliable;

prior and posterior frames should be steady, without
soaring or plunging.

Based on the considerations above, we design the CCuP by
calculating the confidence score for each frame and signing
those frames with smoothness in both spatial and temporal
dimensions as reliable frames. The complete pseudocode of
the CCuP is shown in Algorithm 2.

IV. EXPERIMENTS

In this section, extensive experiments are conducted to
validate SE-Calib on the KITTI [53] dataset. We use thousands
of frames from the KITTI Odometry Benchmark as our test
ground and verify the boresight parameters calibration results.
KITTI is a typical urban road scenario dataset, including a
large number of vehicles, pedestrians, buildings, traffic signs,
and vegetation.

A. Dataset and Implementation

1) Dataset: KITTI [53] is a driving-scenes dataset for
several tasks, including object detection, depth prediction,
and semantic segmentation. The KITTI Odometry Benchmark
was collected in German with a Velodyne-HDLE64 LiDAR
and two high-resolution RGB cameras (only images from the
left camera are used in our validations). The laser scanner
captured ten frames a second and cameras took images with
the same frequency. Data used in our experiments are synced
and rectified. The transformation matrix from the calibration
file is thought of as the ground truth in our experiment.

2) Model Training: For the image sequences, we pretrained
the 2-D-SED model DFF on the Cityscapes [64] dataset with
fine annotation and utilized on the KITTI dataset directly.
For the point cloud sequences, SemanticKITTI [60] provides
large-scale annotated point clouds based on the KITTI Odom-
etry Benchmark. We retained two sequences (sequences 0 and
7) for the SE-Calib evaluation and others for training the
3-D-SS model Cylinder3D [8]. Both DFF and Cylinder3D
were trained with 19 classes, 14 common classes were utilized
in calibration, and others were ignored.

3) Hardware and Software: All the evaluations were com-
pleted on a laptop equipped with AMD R4800H CPU and
NVIDIA GeForce RTX2060 GPU with C++ and Python
implementation. Our operation system is Ubuntu20.04 LTS.

Fig. 5. Point clouds submaps of two study areas. (a) Area I. (b) Area II.

TABLE I
DATASET DESCRIPTION

4) Hyperparameters: The origin RGB images with approx-
imately size (h, w) = (370, 1240) were cropped to (h, w) =

(320, 1024) before fed into 2-D-SED pipeline. Cylinder3D [8]
split point clouds into 3-D cylindrical voxel with size =

480 × 360 × 32 in the cylindrical coordinate system in their
approach, where the dimensions indicate the radius r , azimuth
θ , and height z. We followed their settings in our experiments.
The search step ssp = 0.7◦ and the minimum search step
threshold is one-tenth of the ssp. The spatial and temporal
smoothness threshold (ϵs, ϵt ) = (0.35, 0.9) in the CCuP. The
analysis of hyperparameters settings is detailed in SecV-D.

B. Quantitative Evaluation

To evaluate the feasibility of our method, we take 1000 con-
secutive scans as studying areas from two different sequences,
as shown in Fig. 5. Table I lists the details of the experimental
areas. For each scan, we apply the perturbation distributed
in [1◦, 2◦

] uniformly to the ground-truth boresight parameters
(provided by the calibration file) as initialization, where the
sign of perturbation is randomized. Fig. 6 visualizes the
solutions of the SE-Calib among test frames, where the first
row shows the confidence value and the second row shows
the residual between optimized parameters and the ground-
truth parameters. As shown in Fig. 6(a), the proposed method
reduces the roll, pitch, and yaw residual to 0.165◦, 0.147◦,
and 0.184◦ in area I; in Fig. 6(b), the mean average residual
of roll, pitch, and yaw in area II is 0.265◦, 0.213◦, and 0.261◦,
respectively.

Although considerable performance was achieved on most
frames, severe miscalibration encounters on some frames.
Interpretation of miscalibration is some nasty frames, with
confusing occlusion or few unique features as mentioned in
Section III-B, infiltrated into calibration frames. To filter out
those unreliable frames, two additional tricks are available:
1) removing outliers based on CCuP and 2) selecting the
frame with the temporally highest confidence level for every
small period of time, called “temporal reliability selection”
(TRC). The goals of CCuP and TRC are different. The
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Fig. 6. Calibration results of SE-Calib. (a) and (b) Confidence of calibration
results in areas I and II, reliable frames denoted with green histogram and
unreliable frames (detected by CCuP) denoted with red histogram. (c) and
(d) Boresight parameters error after calibration in areas I and II.

Fig. 7. Calibration results of SE-Calib+TRC. (a) and (b) Confidence of
calibration results in areas I and II. (c) and (d) Boresight parameters error
after calibration in areas I and II.

CCuP is proposed to eliminate all the unreliable frames from
noisy scenes as much as possible (without considering the
distribution of reliable frames). While the TRC is to provide
time-continuous and reliable calibration results. In urban MMS
or AV applications, the extrinsic transform parameters should
keep steady for a short period of time (because of the flatness
of the road). Therefore, if we could select one “temporal reli-
able” frame for a short period of time (1 s in our experiment)
with TRC or select all reliable frames during a large period of
time (100 s in our experiment) with CCuP and then propagate
the optimized parameters of those reliable frames to the nearby
unreliable frames, a more reliable calibration result can be
achieved in the aspect of engineering.

Thus, we test CCuP and TRC to extract reliable results.
Fig. 7 visualizes the solutions of the SE-Calib+TRC, where
the mean average residual of roll, pitch, and yaw reduced to
0.095◦, 0.100◦, and 0.129◦ and 0.166◦, 0.121◦, and 0.172◦,
respectively. Comparing Fig. 7 with Fig. 6, all the mis-
registrations were filtered out and a more accurate solu-
tion, with only 0.130◦ residual across all the dimensions
and frames, was achieved, which indicates both robustness
and accuracy of our proposed TRC strategy. Also, Table II
counts the calibration results of vanilla SE-Calib, SE-Calib +

CCuP, and SE-Calib + TRC. It shows that the SE-Calib +

CCuP and SE-Calib + TRC achieve similar calibration
results with 0.129◦ and 0.130◦ average error of the boresight
parameters.

To qualitatively evaluate the performance of our method
in a more direct way, point-pixel corresponding pairs are
checked manually to calculate the reprojection error. Check-
points should be distinguishable and evenly distributed over
the full image, such as trunks, building corners, or vehicles.
After manually selecting and projecting checkpoints of point
clouds onto the image plane, the offsets between projection
pixels and ground-truth pixels are measured, as formatted in

Fig. 8. Error distribution in study sites. (a) Site a. (b) Site b.

the following equation:

pixelerror =

√
(xproj − xgt )2 + (yproj − ygt )2 (4)

where (xgt , ygt ) denotes the ground-truth pixels coordinates
and (xproj, yproj) denotes the projection pixels coordinates of
checkpoints on the image plane. The reprojection error of
initial transform parameters and the optimized error of two
selected sites are counted and shown in Table III. Fig. 8 shows
the error distribution in these sites.

C. Comparative Evaluation

We reimplemented two existing calibration methods based
on artificial features and tested with identical settings as our
baseline, including line feature [22] and edge feature [15].
In the absence of publicly released codes, we developed
our best adaptations of these methods and verified them on
identical test frames as described in Section IV-A, where
empirical results are shown in Table II. The results indicate
that the proposed SE-Calib outperforms baselines by a large
margin. The CCuP and TRC strategies further enhance our
superiority.

D. Calibration Visualization

To visualize the calibration effect, we project the raw
point clouds onto the image plane with initial transform
parameters and optimized transform parameters, respectively,
as shown in Figs. 9 and 10. Following the colorization rules
of SemanticKITTI [60], cars are colorized blue and poles are
colorized yellow. The alignment between point clouds and
images improves noticeably after calibration. More results can
be found here.12

E. Time Performance

Time performance statistics of SE-Calib is reported
in Table IV. We utilize the official timing interface
torch.cuda.Event of PyTorch to track the time cost of
2-D-SED [24] and 3-D-SS [8] inferences. Due to the limited
GPU memory (6 GB), the 2-D-SED and 3-D-SS processes
are carried out sequentially. Since the lightweight 3-D-SED
process is parallel, time consumption is negligible. The total
time cost is less than 0.6 s (0.575 s). We can find that the
proposed pipeline could perform online even on a mobile
device with limited computation and storage capacity.

1https://youtu.be/WstVReWA-SA
2https://www.bilibili.com/video/BV1sc411H7iS
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TABLE II
QUANTITATIVE RESULTS OF SE-CALIB AND BASELINES

TABLE III
REPROJECTION ERROR WITH INITIAL BORESIGHT PARAMETERS AND

CALIBRATED BORESIGHT PARAMETERS

TABLE IV
TIME PERFORMANCE OF THE PROPOSED SE-CALIB ON A LAPTOP

EQUIPPED WITH AMD R4800H CPU AND NVIDIA RTX 2060 GPU

Fig. 9. Qualitative results of the SE-Calib in study area I. (a) Projection with
the initial boresight parameters. (b) Projection with the optimized parameters.

V. DISCUSSION

A. Comparation of Semantic Edge and Geometric Edge

In the adaptive optimization process, we exploit semantic
edge features for calibration. However, existing studies have
shown that geometric edge features based on simple distance
discontinuities can also perform well in calibration task [15],
[18], [33]. To evaluate the importance of semantic edge fea-
tures in our work, we replace semantic edge features on point
clouds with geometric edge features detected by a lightweight
method [15]. Due to the lack of semantic information in point
clouds, the objective function is modified as projecting edge
points onto the image plane and calculating the probability that
the projection pixels are classified as an edge in the 2-D-SED
network, formatted in the following equation:

s(R) =

fk∑
fk∈Fse

I k
i j [K (R fk + t)]. (5)

Fig. 10. Qualitative results of the SE-Calib in study area II. (a) Projection
with the initial boresight parameters. (b) Projection with the optimized
parameters.

Fig. 11. Calibration results with geometry edge feature. (a) Boresight
parameters error in study area I. (b) Boresight parameters error in study
area II.

We present the converged solutions based on the same test
ground and settings in Fig. 11. A comparison of the results
in Fig. 11 with those in Fig. 6 shows that the use of geometric
edge features results in inaccurate calibration results. This
indicates that semantic information significantly improves the
robustness of the edge features.

B. Comparison of Soft Targets and Hard Targets

In the feature extraction step, we store the soft targets for
both image and point clouds instead of hard targets. This
approach involves tagging each pixel or point with a float
vectorized feature that represents the probability (instead of
a binary one), where each entry indicates the predicted prob-
ability of the corresponding semantic edge feature category.
Soft targets are more informative than hard targets as they
adaptively weigh the different corresponding pairs, reducing
the impact of less determinate semantic edge features and
increasing the effect of more determinate ones. To demonstrate
our inference that soft targets with advantages in calibration
tasks, we replace the soft targets f with hard targets l through
a binary mapping function B(.) in Eq. (6)

li = B( fi ) =

{
1, fi ≥ 0.5
0, fi < 0.5

(6)
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Fig. 12. Calibration results with hard targets. (a) Boresight parameters error
in study area I. (b) Boresight parameters error in study area II.

TABLE V
ABLATION STUDIES ON THE SEMANTIC EDGE AND SOFT TARGETS

where i means the i th class. Evaluations are conducted and
shown in Fig. 12.

A comparison between Figs. 6 and 12 reveals signifi-
cantly degraded calibration results with hard targets in both
sequences, particularly in area II [Fig. 12(b)]. This indicates
that hard targets lead to poorer accuracy of the calibration.

For a quantitative assessment of our proposed method versus
the alternative methods, we present the average estimation
error across two sequences in Table V. “SE” and “GE” are
for semantic edge and geometric edge, respectively, and “ST”
and “HT” are for soft targets and hard targets, respectively.

C. Analysis of Features Extraction Noise

In most feature-based calibration methods, outlier detection
and removal is a necessary process after feature extraction.
In [22], detected line features with few adjacent points or
shorter than 8 pixels are removed. In [21], detected parking
vehicle pairs with small overlapping areas are masked as false
positive objects and removed. As the SSRCM rule inherently
comes with the error rejection property, we argue that our
SE-Calib does not require either the outlier detection or
removal block. Theoretical analysis and ablation experiments
demonstrate our suppose in this section.

In Eq. (2), for each corresponding point-pixel features pair
( fk, fi j ), a high response score exists only when the semantic
edge features from different modalities with very similar
orientations. Regardless of which side the false detection
occurs, either the image part or the point clouds part, the
orientations of semantic edge features will diverge, and then,
the false corresponding pair will get a low score and contribute
little to the global semantic consistency. In other words, with
the SSRCM, the semantically inconsistent matching pairs are
given lower scores and semantically consistent pairs are given
higher scores, which is in substance similar to the robust
estimation. To simulate outliers in the feature extraction step,
we use random noise distributed in U [0, 1] to mask out patches
of the semantic edge feature maps. The contaminated semantic
edge feature maps are shown in Fig. 13. Then, we perform

Fig. 13. Examples of contaminated semantic edge map. (a) Clean semantic
edge map. (b) Noise patches with a gap of 50 pixels and a side length
of 20 pixels. (c) Noise patches with a gap of 50 pixels and a side length
of 10 pixels. (d) Noise patches with a gap of 25 pixels and a side length of
10 pixels.

TABLE VI
ABLATION STUDIES ON THE FEATURE EXTRACTION NOISE

the optimization process following the identical settings in
Section IV-A. The calibration results are shown in Table VI.
In Table VI, noise = (a, b) means noise patches with a side
length of a pixels and a gap of b pixels.

Comparing the experimental results shown in
Tables II and VI, we find that the vanilla SE-Calib achieves
accurate results despite the noise and the CCuP and TRC
strategies improve the calibration accuracy by a large margin.
We speculate that the CCuP and TRC are still powerful to
remove unreliable frames even under severe disturbances.

D. Hyperparameters Settings and Sensitive Analysis

The search step ssp in the adaptive optimization process
determines the precision of the optimization results, and the
smoothness thresholds (ϵs , ϵt ) in the CCuP trick influence the
refined results directly. As shown in Fig. 14 and Table VII,
setting ssp to a small value (e.g., 0.5) leads to the local opti-
mum that the calibration results of vanilla SE-Calib degrade
obviously. On the contrary, a big value (e.g., 0.9) leads to
higher error when applying CCuP and TRC tricks. Therefore,
we choose the moderate step size ssp = 0.7 for both accurate
and reliable calibration results.

For the smoothness thresholds (ϵt , ϵs), we utilize the grid
search approach to select eight sets of different values and
show the refined calibration results of SE-Calib + CCuP in
Table VIII. The “PCT” in Table VIII means the percentage
of frames that are reserved as “reliable frames” under our
CCuP rules. Our purpose is to balance the percentage of
reserved frames and estimation error, so (ϵs , ϵt ) = (0.35, 0.9)

is adopted.
Another issue about the sensitivity of smoothness thresholds

should be considered is: does the CCuP process particularly
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TABLE VII
ABLATION STUDIES ON THE SEARCHING STEP SSP

TABLE VIII
ABLATION STUDIES ON THE SPATIAL AND TEMPORAL SMOOTHNESS

THRESHOLD (ϵs , ϵt ). ↑ MEANS THAT BIGGER IS BETTER, AND THE
↓ MEANS THAT SMALLER IS BETTER

rely on the temporal smoothness threshold ϵs or the spatial
smoothness threshold ϵt ? Especially when sequential con-
sistency is not available for a single pair of laser frame
and image, can CCuP still improve the calibration accuracy
using spatial smoothness? To verify the issue, we remove the
spatial smoothness ϵs and the temporal smoothness ϵt (set
to 0 empirically) and report the refined calibration results
in Table VIII. According to the results in Table VIII, only
the ϵs or ϵt threshold could refine the calibration results
to an average error of 0.144◦ and 0.137◦, which indi-
cates that the CCuP could still remove unreliable calibration
results powerfully without temporal or spatial consistency
cue.

The other parameters used in our experiments are relatively
easily and reasonably set. The resolution of the RGB images
is not uniform, so we cropped the images to (h, w) =

(320, 1024) for semantic edge prediction. Cylinder3D [8]
divided point clouds into small grids in the cylindrical coordi-
nate system. They claimed that the cylindrical voxel partition
met the varying sparsity of driving-scene LiDAR point cloud
and balanced point distribution. We followed their settings in
our experiments. Since the SE-Calib method could achieve
a 0.129◦ average error at the best case, setting the min-
imum step threshold to one-tenth of the search step ssp
(0.07◦ in our experiment) is a good balance of accuracy and
efficiency.

Fig. 14. Calibration results with different search steps ssp.

Fig. 15. Examples of failure calibration frames. The first column shows
the RGB images and the second column shows the 2-D-SED prediction
results. (a) and (b) False feature extraction. (c) and (d) Short of discriminative
semantic edge features.

E. Analysis of Failed Calibration Cases

The accuracy of the SE-Calib solution relies heavily on the
quality and quantity of semantic edge features extracted from
point clouds and images. We analyze two failure scenarios
in Fig. 15. In Fig. 15(a), due to the large distance and
low resolution, several internal pixels of the continuously
parked vehicles are incorrectly detected as boundary pixels.
In Fig. 15(b), the SE-Calib fails due to insufficient representa-
tion of discriminative and robust semantic edge characteristics.

VI. CONCLUSION

Accurate boresight parameters between the LiDAR and
camera are crucial for multimodalities data fusion tasks.
In this article, we propose SE-Calib, a novel online calibration
method that utilizes semantic edge features to calibrate the
boresight parameters between LiDAR and the camera. The
main contribution of our method is constructing accurate and
robust matching pairs using the semantic edge features. With
the proposed SSRCM rules, the optimization process finds the
optimal value iteratively, while the reliability check-up process
rejects unreliable results. Experiments on the KITTI dataset
have shown that SE-Calib achieves accuracy and robustness
in urban scenes. We expect that the proposed method could
benefit the society of MMS and robotics.

While the results are encouraging, some challenges still
remain. As the distribution and resolution of images in other
evaluation datasets may be different from the training set,
the performance of the 2-D-SED module degrades. Several
cut-edge approaches [65], [66] have proven that unsupervised
domain adaption (UDA) methods could mitigate the problem
caused by domain gap. Also, utilizing a more powerful and
lightweight 2-D-SED module is another way to improve the
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performance of the 2-D-SED task. Besides, the alternative
3-D-SED process is not end-to-end, which may reduce the
efficiency of the calibration task. In future work, we intend
to design novel, accurate, and lightweight 2-D-SED/3-D-SED
modules to improve the semantic edge feature extraction
performance. UDA techniques will be utilized to enhance the
SED accuracy in agnostic environments.
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