
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2023 1

CoFiI2P: Image-to-Point Cloud Registration with
Coarse-to-Fine Correspondences for Intelligent

Driving
Shuhao Kang*, Youqi Liao*, Jianping Li† Member, IEEE, Fuxun Liang, Yuhao Li, Xianghong Zou, Fangning Li,

Zhen Dong Member, IEEE, Bisheng Yang†

Abstract—Image-to-point cloud (I2P) registration is a funda-
mental task in the field of autonomous vehicles and transporta-
tion systems for cross-modality data fusion and localization.
Existing I2P registration methods estimate correspondences at
the point/pixel level, often overlooking global alignment. However,
I2P matching can easily converge to a local optimum when
performed without high-level guidance from global constraints.
To address this issue, this paper introduces CoFiI2P, a novel
I2P registration network that extracts correspondences in a
coarse-to-fine manner to achieve the globally optimal solution.
First, the image and point cloud data are processed through
a Siamese encoder-decoder network for hierarchical feature
extraction. Second, a coarse-to-fine matching module is de-
signed to leverage these features and establish robust feature
correspondences. Specifically, In the coarse matching phase, a
novel I2P transformer module is employed to capture both
homogeneous and heterogeneous global information from the
image and point cloud data. This enables the estimation of
coarse super-point/super-pixel matching pairs with discriminative
descriptors. In the fine matching module, point/pixel pairs are
established with the guidance of super-point/super-pixel corre-
spondences. Finally, based on matching pairs, the transform
matrix is estimated with the EPnP-RANSAC algorithm. Extensive
experiments conducted on the KITTI dataset demonstrate that
CoFiI2P achieves impressive results, with a relative rotation error
(RRE) of 1.14 degrees and a relative translation error (RTE) of
0.29 meters. These results represent a significant improvement
of 84% in RRE and 89% in RTE compared to the current state-
of-the-art (SOTA) method. Qualitative results are available at
https://youtu.be/ovbedasXuZE. The source code will be publicly
released at https://github.com/kang-1-2-3/CoFiI2P.
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Fig. 1. Comparison of the proposed coarse-to-fine I2P registration scheme
and the existing one-stage I2P registration scheme. (a) shows the coarse-to-
fine two-stage registration pipeline. Darker color represents higher similarity
between the node point and the candidate pixel. (b) shows the one-stage
registration pipeline.

Index Terms—Image-to-point cloud registration, coarse-to-fine
correspondence, transformer

I. INTRODUCTION

EStimating six degrees of freedom (6-DoF) pose of a
monocular image with respect to a pre-build point

cloud map is a fundamental requirement for autonomous
vehicles (AV) [1, 2, 3], object detection [4, 5, 6] and re-
localization [7, 8]. Specifically, low-cost unmanned ground ve-
hicles (UGVs) and autonomous vehicles (AVs) equipped with
only a monocular camera frequently face challenges related to
scale ambiguity in absolute localization and depth sensing. The
establishment of a precise transformation relationship between
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the image coordinate system and the pre-built point cloud
coordinate system is of paramount importance, as it not only
accurately localizes the camera but also effectively reduces
data uncertainty inherent in monocular data. [9].

However, cross-modality registration has its inherent chal-
lenges. Some existing methods use hand-crafted detectors and
descriptors for I2P registration [10, 11]. These approaches
rely on structured features like edge or line features [10, 12],
which are limited by specific environmental conditions. With
the rapid development of deep learning (DL), learning-based
I2P registration approaches [13, 14, 15] have been proposed
to extract representative keypoints and descriptors. 2D3D-
Matchnet [13] is the first learning-based I2P registration ap-
proach, which extracts SIFT [16] and ISS [17] keypoints from
image and point cloud as registration primitives, respectively.
Then it learns the descriptors with convolution neural networks
(CNN). However, the manually designed detectors for key-
points extraction lead to poor correspondence accuracy. To
alleviate the difficulty of correspondence construction and im-
prove the registration success rate, DeepI2P [14] converts the
registration problem to a classification problem. A novel bi-
nary classification network is designed to distinguish whether
the projected points are within or beyond the camera frustum.
The classification results are passed into an inverse camera
projection solver to estimate the transformation between the
camera and laser scanners. As a large number of points on the
boundary are misclassified, the accuracy of the camera pose is
still limited. CorrI2P [15] proposed an overlap region detector
for both image and point cloud, then pixels and points in the
overlap region are matched to obtain I2P correspondences.
Feature fusion module is exploited to fuse the point cloud
and image information. Although CorrI2P [15] has significant
improvement over DeepI2P [14], matching merely on one
stage, namely, the pixel-point level without global alignment
guidance, can lead to local minimal and instability.

To sum up, there are two challenges of existing I2P regis-
tration methods: (1) Global context information is ignored and
correspondences are established at the point/pixel level directly
in the existing one-stage matching method. Fig. 1 illustrates
the difference between the existing one-stage matching scheme
and the coarse-to-fine matching scheme. (2) Existing meth-
ods incorporate global feature vectors into other modalities
through feature fusion modules, but they tend to overlook the
spatial relationships within the same-modality data and the
cross-modality data. Consequently, each point or pixel retains
limited knowledge of its global localization and lacks an un-
derstanding of its spatial affinity within both homogeneous and
heterogeneous data. As a result, these existing I2P methods
tend to be trapped in locally optimal solutions.

Inspired by recent coarse-to-fine matching schedules and
transformers in image-to-image (I2I) registration [18, 19] and
point cloud-to-point cloud (P2P) registration approaches [20,
21], this paper proposes Coarse-to-Fine Image-to-Point cloud
(CoFiI2P) network to tackle the challenges of existing one-
stage I2P registration. I2P transformer with self-attention mod-
ules and cross-attention modules is embedded into the network
for global alignment. CoFiI2P mainly contains four modules:
feature extraction (FE), coarse matching (CM), fine matching

(FM), and pose estimation (PE). FE module embeds input
image and point cloud into shared high-dimensional spaces,
and then CM and FM modules establish super-point/super-
pixel correspondences and point/pixel correspondences. In the
PE module, the relative transformation between the camera
and laser scanners is estimated with EPnP-RANSAC algorithm
[22, 23]. Overall, the main contributions of this paper are:

1) A novel coarse-to-fine I2P registration network is pro-
posed to align image and point cloud in a progressive
way. The coarse matching step provides robust but
rough super-point/super-pixel correspondences for the
fine matching step, which filters out most mismatched
pairs and reduces the computation burden. The fine
matching step achieves accurate and reliable point/pixel
correspondences within the global guidance.

2) A novel I2P transformer that incorporates both self-
attention and cross-attention modules is proposed to en-
hance its global-aware capabilities in homogeneous and
heterogeneous data. The self-attention module enables
the capture of spatial context within the same modality
data, while the cross-attention module facilitates the
extraction of hybrid features from both the image and
point cloud data.

The rest of the paper is organized as follows. Section II
reviews the existing I2I, P2P, and I2P registration works.
Section III elaborates on the network design of CoFiI2P.
Extensive experiments are conducted in Section IV. Section V
discusses the crucial modules and factors in the experiments.
Conclusion and future work are drawn in Section VI.

II. RELATED WORK

A. Same-modality Registration

1) I2I Registration: Before the age of deep-learning, hand-
crafted detectors and descriptors (i.e., SIFT [16] and ORB
[24]) are widely used to extract correspondences. Compared
to traditional methods, learning-based methods improve the
robustness and accuracy of image matching with large view-
point differences and illumination changes. MagicPoint [25]
proposed a point-tracking system powered by two CNNs. The
first network in MagicPoint detects salient points and the sec-
ond network estimates the transformation relationship. Based
on MagicPoint, SuperPoint [26] proposed a self-learning train-
ing method through homography adaptation. SuperGlue [27]
proposed an attention-based graph neural network (GNN) for
feature matching. Patch2Pix [28] is the first work to obtain
patch matches and regress pixel-wise matches in a coarse-
to-fine manner. Cotr [19] proposed a hybrid transformer and
CNN network that applies to both coarse and dense matching
problems. LoFTR [18] operates detector-free matching to get
dense correspondences and overcomes small receive field of
CNN with transformer. However, I2I registration methods can
not be directly transferred to the I2P registration task, which
should extract heterogeneous features from cross-modality
data.

2) P2P Registration: Point cloud registration aims to es-
timate the optimal rigid transformation of two point clouds.
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Correspondence-based methods [29, 30, 31] estimate the cor-
respondence first and recover the transformation with robust
estimation methods[23]. RoReg [21] embeds orientation infor-
mation of point cloud to estimate local orientation and refine
coarse rotation through residual regression to achieve fine
registration. In the transformer era, point-based transformers
[20, 32, 33] have emerged and shown great performance.
CoFiNet [34] followed LoFTR’s [18] design and proposed
coarse-to-fine correspondences for registration, which com-
puted coarse matches with descriptors strengthened by the
transformer and refined coarse matches through density adap-
tive matching module. REGTR [35] predicts overlap point
sets and directly outputs transformed points to estimate trans-
formation. PREDATOR [36] first predicts the overlap region
between two point clouds and finds corresponding points with
overlap scores and matching ability scores. GeoTransformer
[20] proposed a geometric Transformer to make full use of
the 3D properties of the point cloud. BUFFER [33] proposed
an efficient, accurate and generalized network that utilizes
both point-wise and patch-wise information for registration.
As the point cloud and image are cross-modality data, which
are characterized by totally different information, above same-
modality registration methods cannot be directly applied.

B. Cross-modality Registration

To address the cross-modality registration problem, a variety
of I2P registration methods have been proposed, which could
be roughly divided into two categories: I2P fine registration
(initial transformation dependent) and I2P coarse registration
(initial transformation free). The I2P fine registration methods
[37, 38, 39, 40] rely on initial transform parameters, and
are widely applied in sensors calibration. Although this paper
focuses on the second class, namely the coarse I2P registration
without any initial transformation knowledge, we give an
exhaustive review of both categories registration methods here.

1) Fine registration methods: Fine registration methods
have been thoroughly researched for several decades. Early-
stage studies [41, 42, 43] utilize various artificial targets as
calibration constraints. In recent years, some approaches have
argued that structured features shared in images and point
cloud could be used for target-less I2P registration, e.g., edge
feature [44] and line feature [10, 11]. Stamos et al. [44]
computes orientation with vanishing points and then calculates
camera position by matching 2D and 3D line features. Pandey
et al. [45] uses mutual information (MI) as the registration
criterion to automatically align a 3D laser scanner and camera.
Zhang et al. [10] proposed a line-based method to register
image and point cloud. Levinson and Thrun [37] employs
edge information and optimizes transformation according to
the response value. Recently, research on 2D and 3D semantic
segmentation motivates semantic feature-based I2P registra-
tion. Li et al. [38] extracts vehicles from panoramic image
and point cloud and maximizes the overlapping area through
Particle Swarm Optimization (PSO) [46] to achieve accurate
transformation estimation. Liao et al. [40] further studied
semantic edges in I2P registration to employ more common
semantic information instead of a certain type of object.

Overall, fine registration methods achieve high registration
accuracy but rely on initial transform knowledge.

2) Coarse registration methods: 2D3D-Matchnet [13] is the
pioneering method to regress the relative transform parameters
with CNN. It extracts SIFT [16] and ISS [17] keypoints
from image and point cloud and learns descriptors with a
Siamese network. However, the hand-crafted detectors from
different modalities match poorly. DeepI2P [14] proposed
a feature fusion module to merge image and point cloud
information and classify points in/beyond the camera frustum.
CorrI2P [15] predicts pixels and points in overlapping areas
and matches with dense per-pixel/per-point features directly
to get I2P correspondences. Although overlapping region
detectors significantly reduce the number of false candidates,
I2P registration only using the low-level feature without global
guidance leads to too many mismatches. Inspired by the
coarse-to-fine strategies in CoFiNet [34], we propose the
coarse-to-fine I2P registration network CoFiI2P, which injects
the high-level response information into low-level matching
for rejecting mismatches.

III. METHODOLOGY

For convenient description, a pair of partially overlapped
image and point cloud are defined as I ∈ RW×H×3 and P ∈
RN×3, where W and H are the width and height, and N
is the number of points. The purpose of I2P registration is
to estimate the relative transformation between the image I
and point cloud P, including rotation matrix R ∈ R3×3 and
translation vector t ∈ R3.

Our method adopts the coarse-to-fine manner to find the
correct correspondences set Ω(I,P). The CoFiI2P mainly con-
sists of four modules: feature extraction (FE), coarse matching
(CM), fine matching (FM) and pose estimation (PE). FE is an
encoder-decoder structure network, that encodes raw inputs
from different modalities into high-dimension feature spaces
and finds in-frustum super-points. CM and FM are cascaded
two-stage matching modules. CM constructs coarse matching
at super-pixel/super-point level, and them FM constructs fine
matching at pixel/point level sequentially with the guidance
of super-pixel/super-point correspondences. Lastly, the PE
module exploits point-pixel matching pairs to regress the
relative transform with the EPnP-RANSAC [22, 23] algorithm.
Workflow of the proposed method is shown in Fig. 2.

A. Multi-scale Feature extraction

We utilize ResNet-34 [47] and KPConv-FPN [48] as the
backbones for image and point cloud to extract multi-level
features. The encoder progressively embeds raw inputs into
high-dimensional features, and the decoder propagates high-
level information to low-level details with skip-connection
for dense per-pixel/point feature generation. Then, we extract
features from multiple resolutions for coarse-to-fine matching.
Specifically, super-points set P̃ and super-pixels set Ĩ at
the coarsest resolution are chosen as candidates for coarse
matching, and local points group Gp̃ and pixels patches Gĩ

are generated from coarse matching pairs for fine matching.
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Fig. 2. Workflow of CoFiI2P. The proposed method consists of feature extraction, coarse matching, fine matching and pose estimation modules. Image and
point cloud are sent to the feature extraction module to obtain hierarchical deep features, respectively. The coarse-level features are strengthened by I2P
transformer module and then matched with the cosine similarity rule. Fine features are gathered from the last layer of the decoder. In each super-point/super-
pixel pair, the node point is set as the candidate and the corresponding pixel is selected from the super-pixel area, a s × s window. The generated dense
matching pairs are utilized to regress the pose with the EPnP-RANSAC [22, 23] algorithm.

The local points group Gp̃x
are constructed with the point-to-

node strategy in the geometric space:

Gp̃x
= {p ∈ P |∥p− p̃x∥ < rg}, (1)

where rg is the chosen radius. As the pixels array on the image
with a rigid order, the local pixels patch Gĩ construct simply
with the pyramid matching strategy.

B. I2P Coarse Matching

In CM module, I2P transformer is utilized to capture the
geometric and spatial consistency between image and point
cloud. Each stage of the I2P transformer consists of a self-
attention block for inter-modality long-range context and a
cross-attention module for intra-modality feature exchange.
The self-attention and cross-attention modules are repeated N
times to extract well-mixed features for super-point/super-pixel
correspondence matching.

1) I2P Transformer: [49, 50] have shown that Vision Trans-
former (ViT) outperforms traditional CNN-based methods
with a large margin in classification, detection, segmentation
and other tasks. Furthermore, recent approaches [18, 19, 32]
have introduced transformer modules for I2I and P2P registra-
tion tasks. Therefore, we introduce the I2P transformer module
customized for cross-modality registration task to enhance
the representability and robustness of descriptors. Different
from ViT used in the same-modality registration tasks, our
I2P transformer contains both self-attention modules for space
context capturing in homogeneous data and cross-attention for
hybrid feature extraction among heterogeneous data.

Fig. 3. Illustration of I2P Transformer module (left) and attention module
(right).

For the self-attention module, given a coarse-level feature
map F ∈ Rn×C of image or point cloud, the query, key and
value vectors q,k,v are generated as:

q = WqF,k = WkF,q = WvF, (2)

where Wq,Wk ∈ RCsa
qk×C ,Wv ∈ RCsa

v ×C are learnable
weight matrixs, as shown in Fig. 3. Then, the global attention
enhanced feature map Fsa is calculated as:

Fsa = Softmax(
qk⊤
√
C

)v. (3)

Extracted global-aware features Fsa are fed into the feed-
forward network (FFN) to fuse the spatial relation information
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in channel dimension. Given a feature map F, the relative
positions are encoded with multi-layer perception (MLP) [51].

Cross-attention is designed for fusing image and point cloud
features in I2P registration task. Given the feature map FP̃ ,FĨ

for super-points set P̃ and super-pixels set Ĩ , cross-attention
enhanced feature maps Fca

P̃
of point cloud and Fca

Ĩ
of image

are calculated as:

Fca
P̃

= Softmax(
qP̃k

⊤
Ĩ√

C
)vP̃ ,

Fca
Ĩ

= Softmax(
qĨk

⊤
P̃√
C

)vĨ ,

(4)

where qP̃ ,kP̃ ,vP̃ are query, key and value vectors of point
cloud feature FP̃ , and qĨ ,kĨ ,vĨ are query, key and value
vectors of image feature FĨ .

Remark. While self-attention module encodes the spatial
and geometric features for each super-pixel and super-point,
the cross-attention module injects the geometric structure
information and texture information across image and point
cloud respectively. Outputs of the I2P transformer carry pow-
erful cross-modality information for matching.

2) Super-point/Super-pixel Matching: For the monocular
camera, the field of view (FoV) is obviously smaller than the
laser scans of 3D Lidar (e.g., Velodyne-H64), which usually
sweeps 360 degrees in the horizontal direction. Therefore, only
a small number of super-points are in the camera frustum. To
filter out beyond-frustum super-points, we add a simple binary
classification head to predict super-points in or beyond the
frustum of the camera. After the beyond-frustum super-points
are removed, the coarse level correspondences are estimated
between in-frustum super-points set P̃ and super-pixels set Ĩ
by sorting the nearest super-pixel ĩ in feature space:

Ω̃M ={(p̃x ∈ P̃ , ĩy ∈ Ĩ)|
y = argmin

|Ĩ|
∥FP̃ (p̃x)− FĨ (̃iy)∥}, (5)

where FP̃ and FĨ are corresponding feature maps.

C. I2P Fine Matching
The first-stage matching at the coarse level constructs coarse

super-point/super-pixel pairs Ω̃M but leads to poor registration
accuracy. In order to obtain high-quality I2P correspondences,
we generate fine correspondence based on the coarse matching
results. During the decoder process, in each super-point/super-
pixel correspondence (p̃x, ĩy), the super-point p̃X reverse to
local points group Gp̃x and the super-pixel ĩy reverse to local
pixels patch Gĩy

. Considering the uneven distribution of point
cloud and computational efficiency, only the node points pn in
local patch group Gp̃ are selected to establish correspondences.
For each node point pn, we select the pixel ik ∈ Gĩy

that
lies nearest in the feature space. Point-pixel pairs in each
super-point-super-pixel pair are staked together as the dense
corresponding pairs ΩM. With point feature map FGp̃ and
pixel feature map FGĩ

of local patch, the fine matching process
is defined as:

ΩM =
{
(pn ∈ Gp̃, ik ∈ Gĩ)|

k = argmin
|Gĩ|

∥FGp̃
(pn)− FGĩ

(ik)∥
}
. (6)

D. EPnP-RANSAC based Pose Estimation

With the precise point-pixel pairs ΩM, the relative transfor-
mation can be solved with EPnP [22] algorithm. As mentioned
in previous approaches, wrong matching may infiltrate into the
point-pixel pairs and decrease the registration accuracy. In the
CoFiI2P, EPnP-RANSAC [22, 23] algorithm is used for robust
estimating camera relative pose.

E. Loss Function

In order to supervise the network simultaneously learning
coarse level descriptors, fine level descriptors and in/beyond-
frustum super-points classification, we introduce a joint loss
function consisting of coarse level descriptor loss Lcoarse, fine
level descriptor loss Lfine and classification loss Lclassify .
The classification loss encourages the network to correctly
label each super-point, and two descriptor losses pull positive
matching pairs closer and push negative matching pairs farther
in feature space.

The cosine similarity rule s(px, iy) of point cloud feature
vector F(px) and image feature vector F(iy) is defined as :

s(px, iy) =
< F(px),F(iy) >

∥F(px)∥∥F(iy)∥
, (7)

and the distance d(px, iy) is defined as:

d(px, iy) = 1− s(px, iy). (8)

On the coarse level, the positive anchor ĩpos for each in-
frustum super-point p̃x is sampled from the ground-truth pairs
set Ω̃M⋆ :

Ω̃M⋆ = {(p̃x ∈ P̃ , ĩpos ∈ Ĩ)|̃ipos = Γ(Tp̃x)}, (9)

where T is the ground-truth transform matrix from point
cloud coordinate system to image frustum coordinate system,
and Γ represents the mapping function that converts points
from camera frustum to image plane coordinate system. The
negative anchor ĩneg is defined as the super-pixel with the
smallest distance to the p̃x in the feature space:

ĩneg = argmin
ĩ∈Ĩ

∥d(p̃x, ĩneg)∥ s.t. ∥̃ineg − ĩpos∥ > r, (10)

where r is the safe radius to remove adversarial samples.
Finally, with positive margin ∆pos and negative margin ∆neg ,
coarse level descriptor loss is defined in a triplet way as Eq.
(11) :

Lcoarse =
∑

(p̃x ,̃ipos ,̃ineg)

(
max

(
0, d(p̃x, ĩpos)−∆pos

)
+

max
(
0,∆neg − d(p̃x, ĩneg)

))
.

(11)

Fine level descriptor loss is defined as modified circle loss
[52]. We randomly select n in-frustum point and their positive
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anchor pixels and negative anchors, as Eq. (10), then the
descriptor loss is defined as:

Lfine = log

(
1 + exp

(
−γαpos(s(px, ipos)−∆pos)

)
∑

(px,ipos,ineg)

exp
(
γαneg(px, s(ineg)−∆neg)

))
,

(12)

where αneg and αpos are the dynamic optimizing rates towards
negative and positive pairs, and γ is the scale factor. As in [52],
the αneg and αpos are defined as:

αneg = max
(
0, s(px, ineg) + ∆neg

)
,

αpos = max
(
0, 1 + ∆pos − s(px, ipos)

)
.

(13)

Super-points classification loss is a binary cross-entropy
loss:

Lclassify = −
∑
p̃x∈P̃

(
p̃x log(p̃

⋆
x) + (1− p̃x) log (1− p̃⋆x)

)
.

(14)
Overall, our loss function is

L = λ1Lcoarse + λ2Lfine + λ3Lclassify, (15)

where λ1, λ2, λ3 are hyperparameters that control the weights
between losses.

IV. EXPERIMENTS

A. Experiment setup

1) Dataset: we evaluate our method on KITTI Odometry
dataset [53], a benchmark dataset extensively employed in
the field of I2P registration. KITTI Odometry dataset consists
of 22 sequences of images and point cloud data collected
simultaneously in urban environments, encompassing a variety
of road scenes and environmental conditions, and 11 sequences
provide ground-truth calibration files. The camera intrinsic
function Γ extracted from calibration files is thought unbi-
ased during experiments. For a fair comparison with existing
approaches [14, 15], sequences 0-8 are used for training and
9-10 for testing.

2) Baseline methods: we compare proposed CoFiI2P with
two open-sourced I2P methods:

• DeepI2P1 [14]: proposed the frustum classification and
inverse camera projection to estimate the camera pose.
Due to the time-consuming data pre-processing and train-
ing, we reference the registration results of the paper.

• CorrI2P2 [15]: is SOTA comparable I2P method. CorrI2P
[15] predicts the overlapping area and establishes corre-
spondences densely for pose estimation. We use officially
released codes to reimplement this method. The only
difference is the number of points changed from 40960
to 20480 for fair comparison.

1https://github.com/lijx10/DeepI2P
2https://github.com/rsy6318/CorrI2P

3) Evaluation metrics: we report the relative rotation error
(RRE), relative translation error (RTE) and registration recall
(RR) to evaluate the registration results. Inlier ratio (IR)
and root mean square error (RMSE) used in I2P and P2P
approaches [34, 54] are introduced to evaluate the quality of
correspondences. RRE and RTE are defined as :

RRE =

3∑
i=1

|r(i)|,

RTE = ∥tgt − te∥,
(16)

where r is the Euler angle vector of R−1
gt Re, Rgt and tgt are

the ground-truth rotation and translation matrix, Re and te are
the estimated rotation and translation matrix.

RR metric [34, 54] estimates the percentage of correctly
matched pairs, indicating the descriptor learning ability of
networks. RR is defined as:

RRM =
1

|ΩM|

|ΩM|∑
i=1

1(

√√√√ 1

|ΩM|
∑

(px,iy)∈ΩM

∥Γ(Tpx)− iy∥ < τ),

(17)
τ is the threshold to remove false registration results, i.e.
10◦/5m. IR denotes the inlier ratio of matching pairs,
which measures the accuracy of correspondences. The IR for
point/pixel correspondences set ΩM is defined as :

IRM =
1

|ΩM|
∑

(px,iy)∈ΩM

1(∥Γ(Tpx)− iy∥ < τ), (18)

in which τ is used to control the reprojection error tolerance.
RMSE denotes the average reprojection error over the corre-
spondences set ΩM:

RMSEM =

√√√√ 1

|ΩM|
∑

(px,iy)∈ΩM

∥Γ(Tpx)− iy∥. (19)

B. Implementation Details

Raw images and point clouds are preprocessed to filter out
noise and reduce the computational burden. The top 50 rows of
images are cropped out as most of these pixels see sky. Then
images are resized to 160× 512 for training and testing. The
points are downsampled with 0.1m× 0.1m× 0.1m voxel and
then randomly sampled 20480 points as input. The resolution
for coarse matching is 1/8 of original resolution of image and
1/16 of original resolution of point cloud, while 1/2 for both
image and point cloud in fine matching.

During the training process, with correct transform param-
eters provided by the calibration files, the ground truth cor-
respondences ΩM⋆ are established to supervise the network.
We trained the whole network 25 epochs with batch size of
1. We use the Adam [55] to optimize the network, and the
initial learning rate is 0.001 and multiple by 0.25 after every
5 epochs. For our joint loss, we set λ1 = λ2 = λ3 = 1.
The safe radius r, positive margin ∆pos and negative margin
∆neg in loss function are set to 1, 0.2 and 1.8 respectively.
Scale factor γ is set to 10. During the coarse matching, super-
points are projected to the frustum of the image, and beyond-
frustum super-points are removed. Then we uniformly sample

https://github.com/lijx10/DeepI2P
https://github.com/rsy6318/CorrI2P
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TABLE I
REGISTRATION ACCURACY ON KITTI DATASET

Threshold(◦/m) RRE(◦) RTE(m) RR(%)
DeepI2P (2D) 10/5 7.56± 7.63 3.28± 3.09 -
DeepI2P (3D) 10/5 15.52± 12.73 3.17± 3.22 -

CorrI2P
none/none 6.93± 29.03 2.68± 10.51 -

45/10 3.41± 3.64 1.48± 1.35 97.07
10/5 2.70± 1.97 1.24± 0.87 90.66

CoFiI2P
none/none 1.14± 0.78(−84%) 0.29± 0.19(−89%) -

45/10 1.14± 0.78(−67%) 0.29± 0.19(−80%) 100.00(+2.93)
10/5 1.14± 0.78(−58%) 0.29± 0.19(−77%) 100.00(+9.34)

64 super-points from in-frustum ones. The corresponding
super-pixels are found with Eq. 4. During the testing process,
we set the confidence threshold as 0.9 to obtain reliable in-
frustum super-points in coarse matching. All the experiments
are conducted on a single RTX 4090 GPU. The training of
CoFiI2P takes about 49 hours.

C. Registration Accuracy

Different from [13, 14, 15] which use a specific set of
thresholds (i.e. 10◦/5m) to reject false registration frames, we
report the RRE and RTE of our CoFiI2P under three different
settings as listed in Table I. When we use none/none as the
threshold, it implies that no specific thresholds are applied
to filter out false registration frames. Conversely, when we
set the thresholds to 10◦/5m and 45◦/10m, it means that
any frames with registration errors exceeding these specified
thresholds are excluded during the evaluation process. By
employing these diverse settings, we can conduct a more
equitable analysis of the performance of the I2P registration
methods.

The proposed method outperforms all baseline methods by
a large margin, which indicates that the CoFiI2P is both robust
and accurate in urban environments. Specifically, with different
registration error threshold none/none, 45◦/10m, 10◦/5m,
the RRE reduces 84%, 67%, 58% and the RTE reduces 89%,
80%, 77% compared to CorrI2P [15] respectively. Meanwhile,
the RR improves by 2.93%, 9.34% under two pairs of thresh-
olds. Notably, our method significantly improves registration
accuracy and reduces inferior results. We indicate that the
CorrI2P [15] takes poor performance under large view and
illumination variations, but our CoFiI2P operates stably and
robustly. Therefore, the global RRE and RTE are significantly
better than the CorrI2P [15]. We project the points to image
plane with transform parameters provided by ground-truth
files, CorrI2P [15] and CoFiI2P respectively and render with
depth and deploy the qualitative registration results in Fig. 5. It
can be seen that the CoFiI2P remains stable and provides more
accurate results, which proves our indication. More qualitative
results are released in the video demo3.

The distribution of relative rotation error (RRE) and relative
translation error (RTE) on the KITTI dataset are shown in Fig.
6. Neither thresholds nor other constraints are used to remove

3https://youtu.be/ovbedasXuZE

false registration results. Fig. 6 shows that the predictions of
our CoFiI2P are clearly concentrated in the interval with much
smaller errors and serious misregistration cases are completely
eliminated.

The precision, recall, accuracy and F1-score of frustum
classification are shown in Table II. The results show that
our CoFiI2P gets higher recall, accuracy and F1-score than
CorrI2P [15], where the recall improves about 10.69% over
the CorrI2P [15], but the precision drops about 5.96%. We
indicate that the coarse-to-fine matching schedule excavates
more overlapping areas and gets higher recall value, but
classification on coarse level leads to lower precision. Overall,
we have achieved a better balance between precision and
recall.

TABLE II
FRUSTUM CLASSIFICATION RESULT

Precision Recall Accuracy F1-score
DeepI2P - - 94.00 -
CorrI2P 97.14 89.07 97.25 92.81
CoFiI2P 91.18 99.76 98.26 95.26

In order to evaluate the quality of correspondences directly,
we introduce the inlier ratio (IR) metric as in P2P registration
approach [34]. The quantitative results are shown in Fig.
7 and qualitative results are shown in Fig. 4. From Fig.
7, CoFiI2P gets obviously higher IR scores than CorrI2P
[15] under various thresholds. As we relax the constraint,
the advantage of CoFiI2P becomes more apparent. When the
tolerance threshold is set to 5 pixels, IR score of our CoFiI2P
is 80.75%, 49.91% higher than CorrI2P [15]; when set to
10 pixels, IR score of CoFiI2P rises to 97.49%, 43.35%
higher than CorrI2P [15]. The fact that our method obtains
higher IR scores than CorrI2P [15] with a small threshold
indicates that the CoFiI2P corrects a large partition of severe
misregistration correspondences. The RMSE distribution is
shown in Fig. 8 and demonstrates that our CoFiI2P owns
higher correspondence quality. Specifically, CoFiI2P reduces
the global average RMSE value from 25.78 pixels of CorrI2P
[15] to 3.58 pixels, about 86.11% improvement. From the pairs
matching aspect, our method obviously improves the quality
and quantity of correspondences in a global view and benefits
downstream registration tasks.

https://youtu.be/ovbedasXuZE
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Fig. 4. Qualitative results of correspondences estimated by CoFiI2P.

Fig. 5. Quantitative registration results.

V. DISCUSSION

In this part, we analyze three crucial factors in our CoFiI2P:
I2P transformer module, coarse-to-fine matching scheme and
point cloud density. We conduct ablation studies on them

to prove the effectiveness of each module and review the
influence of point cloud density. In order to reduce the
computational burden, we train the variant networks 10 epochs
in the discussion part, instead of 25 epochs in the experiments
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Fig. 6. Error distribution of RRE and RTE. (a) and (b) show the RRE and
RTE distribution of CorrI2P [15], and (c) and (d) show the RRE and RTE
distribution of CoFiI2P respectively.

Fig. 7. Comparison of inlier ratio with different thresholds

Fig. 8. RMSE distribution of CorrI2P [15] and CoFiI2P

part. We report the global RRE and RTE as evaluation metrics
and no thresholds are used to reject false registration scenes.

A. Analyze of the I2P transformer

I2P transformer [56] with self-attention module and cross-
attention module is crucial to image-to-point cloud alignment

at the global level. In this part, we conduct ablation studies to
assess the effectiveness of the I2P transformer. We train the
CoFiI2P without any attention module as baseline. Then, the
self-attention modules and cross-attention modules are added
on the coarse level respectively. Table III shows registration re-
sults. As shown in Table III, the baseline method performance
drops significantly without any attention module. Besides, the
self-attention module reduces the RRE about 1.06◦ and the
RTE about 0.47m, and the cross-attention module reduces
the RRE about 0.92◦ and the RTE about 0.38m respectively.
With both the self-attention and cross-attention modules, the
CoFiI2P achieves the smallest registration error. Moreover,
with both self-attention and cross-attention modules, the vari-
ance reduces by a large margin, which indicates that the I2P
transformer block enhances both the accuracy and robustness
of network.

TABLE III
ABLATION STUDY ON I2P TRANSFORMER BLOCKS. SA DENOTES
SELF-ATTENTION MODULE AND CA DENOTES CROSS-ATTENTION

MODULE.

Baseline SA CA RRE(◦) RTE(m)
✓ 2.88± 5.32 0.90± 2.44
✓ ✓ 1.82± 2.71 0.43± 0.75
✓ ✓ 1.96± 1.95 0.52± 0.59
✓ ✓ ✓ 1.28± 0.94 0.33± 0.23

B. Comparision of coarse-to-fine matching scheme and one-
stage matching scheme

Our CoFiI2P proposes to estimate coarse correspondences at
super-point/super-pixel level first and then generate dense cor-
respondences at point-pixel level sequentially. To demonstrate
that the progressive two-stage registration operates better than
the one-stage registration used in previous I2P approaches, we
conduct ablation experiments on the coarse-to-fine matching
scheme. This ablation study employs the backbone with full
I2P transformer blocks as baseline and evaluates the regis-
tration accuracy with only the coarse matching scheme or
fine matching scheme. For coarse matching only, the matching
pairs are established on the coarse level and remapped to the
original resolution for pose estimation. By contrast, for fine
matching only, matching pairs are established on the fine level
directly, without guidance of coarse level correspondences.
Experiment results in Table IV show that removing either
coarse matching stage or fine matching stage leads to higher
registration error and variance. We indicate that coarse-level
registration provides robust correspondences and fine-level
registration provides accurate matching pairs. Combining the
coarse-level and fine-level registration sequentially makes it
easier to access the global optimal solution in I2P registration
task.

C. Analysis of point cloud density

Given the significant impact of point cloud density on the
representation learning process, we conducted ablation studies
to examine this influence. The results in Table V present
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TABLE IV
ABLATION STUDY ON I2P TRANSFORMER BLOCKS. CM DENOTES COARSE

MATCHING AND FM FINE MATCHING.

Baseline CM FM RRE(◦) RTE(m)
✓ ✓ 1.58± 1.64 0.41± 0.39
✓ ✓ 1.62± 2.89 0.44± 0.82
✓ ✓ ✓ 1.28± 0.94 0.33± 0.23

registration accuracy and computational complexity for various
point cloud densities. All experimental settings and hyperpa-
rameters remained consistent with those outlined in Section
IV-A. The findings in Table V reveal that as point cloud
density decreases, the qualitative metrics deteriorate, while
higher point cloud densities correspond to a sharp increase
in computational complexity. It’s an intuitive observation that
low-density point clouds lose local structured information, and
high-density point clouds place a heavy computational burden.
As a result, we opted for a compromise and selected 20,480
points, striking a balance between efficiency and accuracy.

TABLE V
ABLATION STUDY ON POINT CLOUD DENSITY.

#Points RRE(◦) RTE(m) FLOPs
5120 10.68± 31.69 3.42± 22.85 37.42G

10240 1.67± 2.07 0.42± 0.41 56.00G
20480 1.28± 0.94 0.33± 0.23 93.80G
40960 1.23± 1.30 0.32± 0.28 171.91G

VI. CONCLUSION

In this paper, we propose CoFiI2P, a novel network for I2P
registration. The core is the coarse-to-fine matching strategy,
which establishes robust correspondence on the global level
first and learns the precise correspondences on the local level
progressively. Furthermore, the I2P transformer with self-
attention and cross-attention module is introduced to enhance
the global-aware ability in homogeneous and heterogeneous
data. Compared with one-stage dense prediction and matching
approaches, CoFiI2P filters out a large number of false corre-
spondences and holds a safe lead in all the metrics. Extensive
experiments on the KITTI dataset have demonstrated that
CoFiI2P owns accuracy, robustness, and efficiency in various
environments. We hope that the released code of CoFiI2P
could motivate the related societies.

In the near future, we intend to design lightweight I2P
networks for compact robots and auto-driving vehicles. We
believe that achieving real-time regression of transformation
parameters is of paramount importance for seamlessly fusing
multiple modalities, enhancing navigation capabilities, and
enabling downstream perception tasks.
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